Aggregating Data for Optimal Learning

Sushant Agarwal*1

Yukti Makhija²

¹Northeastern University

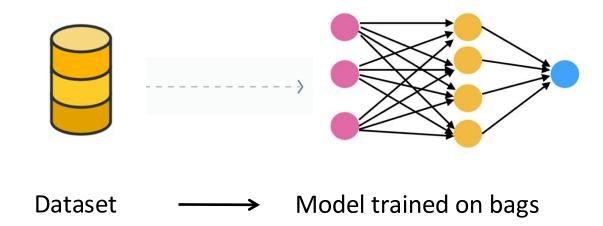
Rishi Saket²

Aravindan Raghuveer²

²Google DeepMind

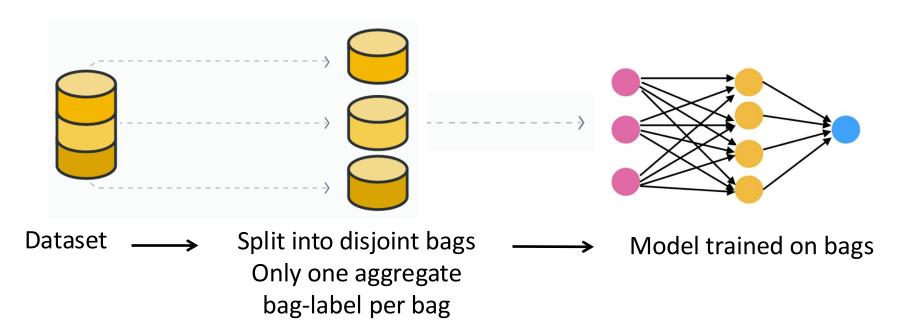
UAI 2025

Supervised Learning



- Training dataset comprises of n tuples (x_i, y_i) .
 - x_i denotes an instance/feature-vector with label y_i .
 - Denote the sets by *X*, *Y* respectively.
- Train a model to predict labels of unseen instances.

Learning from Aggregate Labels



- X is partitioned into disjoint bags $B = \{B_1, B_2, \dots, B_k\}$.
 - Bag B_l has bag-label \overline{y}_l .
- $\overline{y_l}$ is derived from the labels present in B_l via some aggregation function.
- Train a model to predict labels of unseen instances.

LLP and MIR

We focus on two popular paradigms.

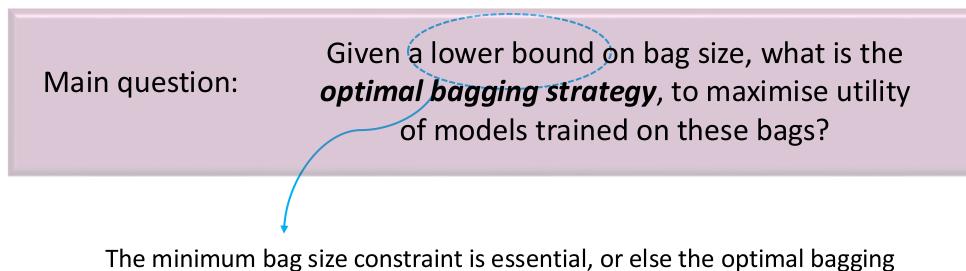
- Learning from Label Proportions (LLP): $\overline{y_l}$ is the average of the individual instance labels in B_l .
- Multiple Instance Regression (MIR): $\overline{y_l}$ is the label of one (undisclosed) instance in B_l , chosen uniformly at random.

LLP and MIR formulations are becoming increasingly prevalent.

- Privacy concerns
 - If the bags are of large size, revealing only the aggregate bag-label to the learner provides privacy protection for individual labels.
- Semi-supervised learning
 - One could partition the data into bags, and query an annotator for the label of one of the instances in each bag.

Problem Statement

- In some cases, bags are fixed.
- In others, these is flexibility in curating the bags.



would be the trivial strategy of putting each point in a separate bag.

Setup

We consider the task of linear regression.

• Assume the existence of an underlying (unknown) θ^* .

•
$$y_i = x_i \theta^* + \epsilon_i, \epsilon_i = N(0, \sigma^2)$$
.

- Given bags and bag-labels, find estimator $\hat{\theta}$ with maximum utility.
 - Utility defined in terms of closeness to θ^* .
- Train a model on bags by minimizing a given loss function.
 - Instance-level loss
 - Bag-level loss
 - Aggregate-level loss

Contributions

- **Optimal bagging:** We provide theoretical utility guarantees, and show that in each case, the optimal bagging strategy reduces to finding the optimal *k*-means clustering of the feature vectors or the labels.
- **Differential Privacy**: Apart from the inherent privacy that MIR and LLP offer, we can perturb the labels to obtain formal *label differential-privacy* guarantees, incurring an additional utility error.
- **GLMs:** We extend our results for Linear Regression to Generalized Linear Models (GLMs).
- **Experiments:** We experimentally validate our results on both synthetic and real-world data.

Loss Functions

• An estimator $\hat{\theta}$ minimizes **instance-level loss**, if

$$\hat{\theta} := \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{l=1}^{m} \sum_{i \in B_l} \ell(\overline{y}_l, f_{\theta}(x_i))$$

• An estimator $\hat{\theta}$ minimizes **bag-level loss**, if

$$\hat{\theta} := \operatorname*{argmin}_{\theta} \frac{1}{m} \sum_{l=1}^{m} \ell\left(\overline{y}_{l}, \frac{\sum_{i \in B_{l}} f_{\theta}(x_{i})}{|B_{l}|}\right).$$

• An estimator $\hat{\theta}$ minimizes **aggregate-level loss**, if

$$\hat{\theta} := \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{l=1}^{m} \ell\left(\overline{y}_{l}, f_{\theta}\left(\frac{\sum_{i \in B_{l}} x_{i}}{|B_{l}|}\right)\right).$$

Optimal Bagging

- Intuitively, a bagging provides good utility if the bags are homogeneous, i.e., the feature-vectors and/or labels within a bag are similar.
- By deriving upper bounds on the error, we deduce optimal bagging strategies.

We consider two types of bagging procedures.

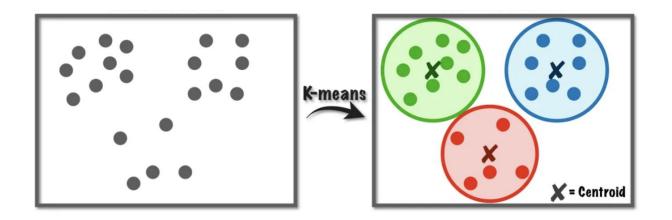
- Label-dependent bagging: Individual instance labels are available for the bagging.
- Label-agnostic bagging: Individual instance labels are *not* available for the bagging.

Optimal Bagging (label-dependent)

	Instance-level loss	Bag/Aggregate-level loss
LLP	1-dimensional <i>k</i> -means clustering of the labels (Javanmard et al. '24)	Minimize the condition number of the covariance matrix of each bag's centroid (Our work)
MIR	1-dimensional <i>k</i> -means clustering of the labels (Our work)	Involves both <i>k</i> -means clustering of labels, and minimizing the condition number (Our work)

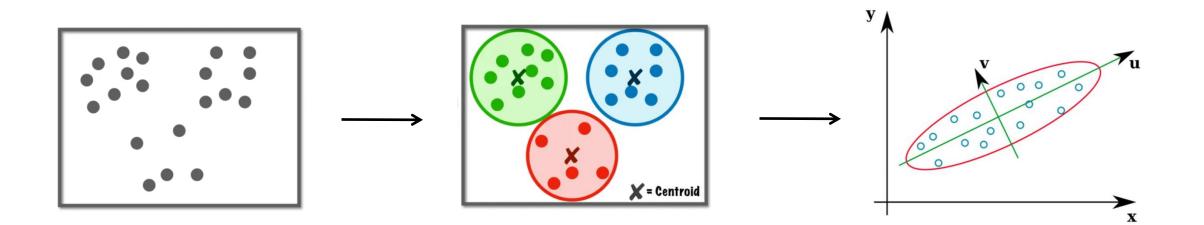
Optimal Bagging (label-dependent)

$$rgmin_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2$$



Optimal Bagging (label-dependent)

Minimize the condition number of the covariance matrix of each bag's centroid?



Optimal Bagging (label-agnostic)

- Instance *k*-means: We justify that *k*-means of the instances *X* is a good heuristic for each scenario we consider.
 - $y_i \approx x_i \theta^* \Longrightarrow k$ -means of instances is a good heuristic for k-means of labels.
 - Maximizing the variance of bag-centroids along a direction ⇔ finding an optimal k-means clustering of instances projected on that direction.
- **Random bagging:** As a baseline, we also provide a utility analysis of bagging randomly.

Thanks for listening!

For more details, check out the paper!

Personal Website agarwal.sus@northeastern.edu