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Supervised Learning
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• Training dataset comprises of 𝑛 tuples (𝑥𝑖 , 𝑦𝑖).
• 𝑥𝑖  denotes an instance/feature-vector with label 𝑦𝑖.
• Denote the sets by 𝑋, 𝑌 respectively.

• Train a model to predict labels of unseen instances.

Dataset Model trained on bags



Learning from Aggregate Labels
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• 𝑋 is partitioned into disjoint bags 𝐵 = 𝐵1, 𝐵2, … , 𝐵𝑘 .
• Bag 𝐵𝑙 has bag-label ഥ𝑦𝑙.

• ഥ𝑦𝑙  is derived from the labels present in 𝐵𝑙  via some aggregation function.
• Train a model to predict labels of unseen instances.

Dataset Split into disjoint bags
Only one aggregate 
bag-label per bag

Model trained on bags



LLP and MIR
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We focus on two popular paradigms.
• Learning from Label Proportions (LLP): ഥ𝑦𝑙  is the average of the individual 

instance labels in 𝐵𝑙.
• Multiple Instance Regression (MIR): ഥ𝑦𝑙  is the label of one (undisclosed) 

instance in 𝐵𝑙, chosen uniformly at random.

LLP and MIR formulations are becoming increasingly prevalent.
• Privacy concerns

• If the bags are of large size, revealing only the aggregate bag-label to the 
learner provides privacy protection for individual labels.

• Semi-supervised learning
• One could partition the data into bags, and query an annotator for the label of 

one of the instances in each bag.
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Problem Statement 

The minimum bag size constraint is essential, or else the optimal bagging 
would be the trivial strategy of putting each point in a separate bag. 

• In some cases, bags are fixed.
• In others, these is flexibility in curating the bags.

Given a lower bound on bag size, what is the 
optimal bagging strategy, to maximise utility 

of models trained on these bags?

Main question: 
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Setup

We consider the task of linear regression. 
• Assume the existence of an underlying (unknown) 𝜃∗.

• 𝑦𝑖  = 𝑥𝑖𝜃∗ + 𝜖𝑖, 𝜖𝑖 = 𝑁(0, 𝜎2) .

• Given bags and bag-labels, find estimator 𝜃 with maximum 
utility.
• Utility defined in terms of closeness to 𝜃∗.

• Train a model on bags by minimizing a given loss function. 
• Instance-level loss
• Bag-level loss
• Aggregate-level loss

 



Contributions
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• Optimal bagging: We provide theoretical utility guarantees, and 
show that in each case, the optimal bagging strategy reduces to 
finding the optimal 𝑘-means clustering of the feature vectors or 
the labels.  

• Differential Privacy: Apart from the inherent privacy that MIR and 
LLP offer, we can perturb the labels to obtain formal label 
differential-privacy guarantees, incurring an additional utility error.

• GLMs: We extend our results for Linear Regression to Generalized 
Linear Models (GLMs). 

• Experiments: We experimentally validate our results on both 
synthetic and real-world data.



Loss Functions 
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• An estimator 𝜃 minimizes instance-level loss, if

• An estimator 𝜃 minimizes bag-level loss, if

• An estimator 𝜃 minimizes aggregate-level loss, if



Optimal Bagging
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• Intuitively, a bagging provides good utility if the bags are 
homogeneous, i.e., the feature-vectors and/or labels within a 
bag are similar. 

• By deriving upper bounds on the error, we deduce optimal 
bagging strategies.

We consider two types of bagging procedures.
• Label-dependent bagging: Individual instance labels are 

available for the bagging.
• Label-agnostic bagging: Individual instance labels are not 

available for the bagging.



Optimal Bagging (label-dependent)
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Instance-level loss Bag/Aggregate-level loss

LLP

1-dimensional 𝑘-means 
clustering of the labels 
(Javanmard et al. ‘24) 

Minimize the condition number of the 
covariance matrix of each bag’s centroid 

(Our work) 

MIR
1-dimensional 𝑘-means 
clustering of the labels

(Our work)

Involves both 𝑘-means clustering of labels, 
and minimizing the condition number 

(Our work) 



Optimal Bagging (label-dependent)
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Optimal Bagging (label-dependent)
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Minimize the condition number of the covariance matrix of each bag’s 
centroid?



Optimal Bagging (label-agnostic)
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• Instance 𝒌-means: We justify that 𝑘-means of the instances 𝑋 is a 
good heuristic for each scenario we consider.
• 𝑦𝑖 ≈ 𝑥𝑖𝜃∗ ⟹ 𝑘-means of instances is a good heuristic for 𝑘-

means of labels.
• Maximizing the variance of bag-centroids along a direction ⟺ 

finding an optimal 𝑘-means clustering of instances projected on 
that direction.

• Random bagging: As a baseline, we also provide a utility analysis of 
bagging randomly. 



Thanks for listening!  
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For more details, 
check out the paper!

Personal Website
agarwal.sus@northeastern.edu
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